Abstract

Passive all-day radiative cooling (PARC) films with porous structures prepared via nonsolvent-induced phase separation (NIPS) have attracted considerable attention owing to their cost-effectiveness and wide applicability. The PARC performances of the films correlate with their porous structures. However, the porous structure formed using the NIPS process cannot be finely regulated. In this study, we prepared polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) films with porous structures optimized by rationally tuning the phase separation, which was achieved by adjusting the proportions of two good solvents with varying solubility parameters. The optimized PVDF-HFP film with a hierarchically porous structure exhibited a high solar reflectance of 97.7% and an infrared emissivity of 96.7%. The film with excellent durability achieved an average subambient cooling temperature of approximately 5.4 °C under a solar irradiance of 945 W·m-2 as well as a temperature of 11.2 °C at nighttime, thus demonstrating all-day radiative cooling. The results indicate that the proposed films present a promising platform for large-scale applications in green building cooling and achieving carbon neutrality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call