Abstract

A new solid-liquid-gas-solid (SLGS) growth strategy has been exploited to prepare porous SnS nanorods directly on carbon hybrid nanostructure by using a sulfur-containing resin (s-resin) laden with crystalline SnO(2) nanoparticles and subsequent calcination promoted the development of porous SnS nanorods growing on carbon. As an anode material in Li-ion batteries (LIBs), SnS nanorods/C hybrid materials show highly stable and high capacity retention rate, which suggest that the novel hybrid materials have alluring prospect for electrochemical energy storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.