Abstract

Metal electrode is considered as an ideal candidate for electrocatalytic carbon dioxide (CO2) reduction considering its excellent chemical stability, application potential and eco-friendly properties. Optimization process such as morphological control, non-metallic doping, alloying is widely studied to improve the efficiency of metal electrodes. In this work, we successfully improved the CO2 reduction performance of silver using a facile plasma vulcanization treatment. The obtained sulfide derived silver (Ag) porous microrods (SD-AgPMRs) are optimized from both morphology and composition aspects, and demonstrates high Faradaic efficiency and partial current density for carbon monoxide (CO) production at low potentials. The larger specific surface area of porous microrod structure and the improved adsorption energy of important intermediates in comparison with Ag foil are realized by introduction of sulfur (S) atoms after plasma vulcanization activation, as suggested by density functional theory (DFT) calculations. This work presents a novel strategy to optimize metal electrocatalysts for CO2 reduction as well as to improve catalysis in other fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call