Abstract

AbstractPorous silicon (pSi) surfaces have been chemically patterned via a UV initiated hydrosilylation reaction of an alkene through a photomask, introducing chemical functionality in the exposed surface areas. A secondary, UV initiated hydrosilylation reaction with a second alkene of different functionality is performed to backfill the silicon hydride terminated regions on the surface, thereby affording patterned porous films with dual, surface chemistry. UV initiated hydrosilylations were performed using the alkene undecylenic acid N‐hydroxysuccinimide (NHS) ester, and the pSi surfaces were stabilized by a second hydrosilylation reaction with a polyethylene glycol (PEG) appended alkene. NHS ester and PEG functionalized surfaces were used for the selective immobilization of the cell adhesion mediator protein fibronectin (FN), in the NHS‐functional regions. Matrix‐assisted laser desorption/ionization mass spectrometry imaging on the protein functionalized pSi surface confirmed the patterned conjugation of the FN to the NHS functionalized regions. Mammalian cells cultured on these surfaces showed attachment that was confined to the patterned areas of FN on the pSi surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.