Abstract
AbstractThe main requirements to electron field emission cathodes are their efficiency, stability and uniformity. In this work we combined the properties of porous silicon layers and diamond-like carbon (DLC) film to obtain emission cathodes with improved parameters. The layered structures of porous silicon and DLC film were formed both on flat n-Si surface and silicon tips created by chemical etching. The conditions of the anodic and stain etching of silicon in HF containing solution under the illumination have been widely changed. The influence of thin (≤10nm) DLC film coating of the porous silicon layer on electron emission has been investigated. The parameters of emission efficiency such as field enhancement coefficient, effective emission areas and threshold voltages have been estimated from current-voltage dependencies to compare and characterize different layered structures. The improvement of the emission efficiency of silicon tip arrays with porous layers coated with thin DLC film has been observed. These silicon-based structures are promising for flat panel display applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.