Abstract
The lack of drugs that target both disease progression and tissue preservation makes it difficult to effectively manage rheumatoid arthritis (RA). Here, we report a porous silicon-based nanomedicine that efficiently delivers an antirheumatic drug to inflamed synovium while degrading into bone-remodeling products. Methotrexate (MTX) is loaded into the porous silicon nanoparticles using a calcium silicate based condenser chemistry. The calcium silicate-porous silicon nanoparticle constructs (pCaSiNPs) degrade and release the drug preferentially in an inflammatory environment. The biodegradation products of the pCaSiNP drug carrier are orthosilicic acid and calcium ions, which exhibit immunomodulatory and antiresorptive effects. In a mouse model of collagen-induced arthritis, systemically administered MTX-loaded pCaSiNPs accumulate in the inflamed joints and ameliorate the progression of RA at both early and established stages of the disease. The disease state readouts show that the combination is more effective than the monotherapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.