Abstract

Clinical application of paclitaxel (PTX) is limited because of its poor solubility in aqueous media. To overcome this hurdle, we devised an oral delivery system by encapsulating PTX into N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride (HTCC) nanoparticles. These nanoparticles were small (~130 nm), had a narrow size distribution, and displayed high loading efficiency owing to the homogeneous distribution of PTX nanocrystals. The matrix hydrophilicity and porous structure of the obtained nanoparticles accelerated their degradation and improved drug release. In vitro and in vivo transport experiments had proved that the presence of positive charges enhanced the intestinal permeability of these nanoparticles. Further in vitro experiment of cytotoxicity showed that the PTX-loaded HTCC nanoparticle (HTCC-NP:PTX) was more effective than native PTX owing to enhanced cellular uptake. Drug distribution in tissues and in vivo imaging studies confirmed the preferred accumulation of HTCC-NP:PTX in subcutaneous tumor tissue. Subsequent tumor xenograft assays demonstrated the promising therapeutic effect of HTCC-NP:PTX on inhibition of tumor growth and induction of apoptosis in tumor cells. Additional investigation into side effects revealed that HTCC-NP:PTX caused lower Cremophor EL-associated toxicities compared with Taxol. These results strongly supported the notion that HTCC nanoparticle (HTCC-NP) is a promising candidate as an oral carrier of PTX for cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.