Abstract

In this work, the unidirectional freezing method was applied to a wide variety of silica gel precursors; from silica sols which do not readily gel, to thoroughly aged silica hydrogels. It was found that in addition to the well-known structure of fibers with polygonal cross-sections which are commonly obtained in the unidirectional freezing method, porous silica gels having unique morphologies such as honeycomb, lamellar and flat fiber structures could also be obtained by changing the state of the precursor sol or gel. The obtained silica hydrogels were freeze-dried after exchanging the water included in its structure to t-butanol, and finally dry samples maintaining their wet state structures were obtained. The morphology and the porous properties of the obtained silica gels were systematically analyzed and the influences of preparation conditions, including pH, aging time before freezing, SiO 2 concentration, freezing temperature, and storage time at the frozen state on both factors were examined in detail. It was found that the simultaneous controlling of both factors could be easily conducted by simply adjusting preparation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.