Abstract

This study demonstrated a facile method to form a porous polymeric membrane, immobilizing a biocatalyst. A polyelectrolyte-based amphiphilic diblock copolymer, i.e., polystyrene-block-poly(acrylic acid) (PS-b-PAA), self-assembled with hemoglobin (Hb) dually driven by charge and amphiphilicity during solution-casting and evaporation. XPS and contact angle measurements suggested that the PS block enriched on the membrane surface. The PAA block pointed toward the internal membrane as well as ordered the Hb arrangement at the interface of the polymer and electrode. The obtained PS-b-PAA/Hb electrode showed a remarkably enhanced direct electron transfer (ET), which was revealed to be a surface-controlled process accompanied by single-proton transfer. The membrane was tested to catalyze the reduction of hydrogen peroxide, and exhibited an excellent reproducibility and stability. This method with a charge and amphiphilicity dually driven (CADD) self-assembly opened up a new way to construct a third-generation electrochemical biosensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call