Abstract

Pt is a classical catalyst that has been extensively used in fuel cell and solar cell electrodes, owing to its high catalytic activity, good conductivity, and stability. In conventional fiber-shaped solar cells, solid Pt wires are usually adopted as the electrode material. Here, we report a Pt nanoparticle-adsorbed carbon nanotube yarn made by solution adsorption and yarn spinning processes, with uniformly dispersed Pt nanoparticles through the porous nanotube network. We have fabricated TiO(2)-based dye-sensitized fiber solar cells with a Pt-nanotube hybrid yarn as counter electrode and achieved a power conversion efficiency of 4.85% under standard illumination (AM1.5, 100 mW/cm(2)), comparable to the same type of fiber cells with a Pt wire electrode (4.23%). Adsorption of Pt nanoparticles within a porous nanotube yarn results in enhanced Pt-electrolyte interfacial area and significantly reduced charge-transfer resistance across the electrolyte interface, compared to a pure nanotube yarn or Pt wire. Our porous Pt-nanotube hybrid yarns have the potential to reduce the use of noble metals, lower the device weight, and improve the solar cell efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.