Abstract

Traumatology and orthopedic surgery can benefit from the use of efficient local antibiotic-eluting systems to avoid bacterial contamination of implanted materials. In this work a new percutaneous porous-wall hollow implant was successfully used as a local antibiotic-eluting device both in vitro and in vivo. The implant is a macroporous 316 L stainless steel filter tube with a nominal filtration cut-off size of 200 nm with one open end which was used to load the synthetic antibiotic linezolid and an opposite blind end. The antibiotic release kinetics from the device on a simulated biological fluid under in vitro conditions demonstrated an increased concentration during the first five days that subsequently was sustained for at least seven days, showing a kinetic close to a zero order release. Antibiotic-loaded implants were placed in the tibia of four sheep which were trans-surgically experimentally infected with a biofilm forming strain of Staphylococcus aureus. After 7 and 9 days post infection, sheep did not show any evidence of infection as demonstrated by clinical, pathological and microbiological findings. These results demonstrate the capability of such an antibiotic-loaded implant to prevent infection in orthopedic devices in vivo. Further research is needed to assess its possible use in traumatology and orthopedic surgery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.