Abstract

Herein, we firstly develop porous organic cage (POC) as an efficient platform for highly effective radioactive iodine capture under industrial operating conditions (typically ≥ 150 °C, ≤ 150 ppmv of I2). Due to the highly dispersed and readily accessible binding sites as well as sufficient accommodating space, the constructed NKPOC‐DT‐(I‐)Me (NKPOC = Nankai porous organic cage) demonstrates a record‐high I2 uptake capacity of 48.35 wt% and extraordinary adsorption capacity of unit ionic site (~1.62) at 150 °C and 150 ppmv of I2. The I2 capacity is 3.5, 1.6, and 1.3 times higher than industrial silver‐based adsorbents Ag@MOR and benchmark materials of TGDM and 4F‐iCOF‐TpBpy‐I‐ under the same conditions. Furthermore, NKPOC‐DT‐(I‐)Me exhibits remarkable adsorption kinetics (k1 = 0.013 min−1), which is 1.2 and 1.6 times higher than TGDM and 4F‐iCOF‐TpBpy‐I‐ under the identical conditions. NKPOC‐DT‐(I‐)Me thus sets a new benchmark for industrial radioactive I2 adsorbents. This work not only provides a new insight for effectively enhancing the adsorption capacity of unit functional sites, but also advances POC as an efficient platform for radioiodine capture in industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.