Abstract

Monolithic solar water splitting devices implemented in an integrated design approach, i.e. submerged in the electrolyte, pose a significant limitation when it comes to up-scaling. The ion transport distances around the monolith are long and consequently, the ionic Ohmic losses become high. This fact turns out to be a bottleneck for reaching high device efficiency and maintaining optimum performance upon up-scaling. In this paper, we propose a new device design for integrated monolithic solar water splitting based on porous multi-junction silicon solar cells. Simulation results highlight that porous monoliths can benefit from lower ionic Ohmic losses compared to dense monoliths for various pore geometries and monolith thicknesses. In particular, we show how micrometer scale pore dimensions could greatly reduce Ohmic losses, thereby minimizing overpotentials. A square array of holes with a diameter of 20 µm and a period of 100 µm was fabricated on single-junction and multi-junction amorphous and microcrystalline silicon solar cells. A small impact on the open circuit voltage (Voc) and short circuit current density (Jsc) was obtained, with porous triple junction solar cells reaching Voc values up to 1.98 V. A novel device design is proposed based on porous triple-junction silicon-based solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.