Abstract

Soil salinization has become a major environmental factor severely threatening global food security. The application of porous minerals could significantly ameliorate soil fertility and promote plant productivity under salt stress conditions. However, the effects of porous minerals on improving the salt resistance of grain crops in coastal saline soils is not fully studied. In this work, the shoot growth and grain yield of wheat plants grown in coastal saline fields, respectively amended with the four naturally available porous minerals, diatomite, montmorillonite, bentonite and zeolite, were assessed. The application of porous minerals, especially zeolite, significantly improved the biomass and grain yield of wheat plants under saline conditions, as demonstrated by the augmented plant fresh mass (14.8~61.2%) and increased seed size (3.8~58.8%) and number (1.4~57.5%). Soil property analyses exhibited that porous-mineral amendment decreased soil sodium content and sodium absorption ratio, and increased soil nutrients in both the rhizosphere and nonrhizosphere of wheat plants. Further quantitative-PCR and 16S high-throughput sequencing analysis revealed that porous-mineral application also remarkably increased the abundance of bacterial 16S rRNA (0.8~102.4%) and fungal 18S rRNA (89.2~209.6%), and altered the composition of the soil microbial community in the rhizosphere of wheat. Our findings suggest that zeolite could be used as an ideal salt soil amendment, and the changes in soil properties and microorganisms caused by the application of porous minerals like zeolite improved the salt resistance of wheat plants in coastal saline land, leading to increased shoot growth and seed production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call