Abstract

Gases are widely used as energy resources for industry and our daily life. Developing energy cost efficient porous materials for gas storage and separation is of fundamentally and industrially important, and is one of the most important aspects of energy chemistry and materials. Metal-organic frameworks (MOFs), representing a novel class of porous materials, feature unique pore structure, such as exceptional porosity, tunable pore structures, ready functionalization, which not only enables high density energy storage of clean fuel gas in MOF adsorbents, but also facilitates distinct host-guest interactions and/or sieving effects to differentiate different molecules for energy-efficient separation economy. In this review, we summarize and highlight the recent advances in the arena of gas storage and separation using MOFs as adsorbents, including progresses in MOF-based membranes for gas separation, which could afford broader concepts to the current status and challenges in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call