Abstract

Porous membrane-protected micro-solid phase extraction (μ-SPE) using a molecularly imprinted polymer (MIP) as an adsorbent has been proposed as an integrated extraction-cleanup procedure for isolating cocaine (COC) and its metabolites [benzoylecgonine (BZE), ecgonine methyl ester (EME), and cocaethylene (CE)] from human urine. MIP beads have been synthesized using COC as a template molecule, ethylene dimethacrylate (EDMA) as a functional monomer, divinylbenzene (DVB) as a cross-linker, and 2,2′-azobisisobutyronitrile (AIBN) as an initiator. High performance liquid chromatography – tandem mass spectrometry (HPLC-MS/MS) has been used for quantifying the analytes after MIP-μ-SPE. Variables such as urine pH, adsorption temperature and time, mechanical (orbital-horizontal) stirring; and composition of the eluting solution and eluting time, were evaluated. The proposed method was shown to be precise and accurate [relative standard deviations (RSDs) of intra- and inter-day tests ranging from 3 to 8% and from 2 to 10%, respectively]; and analytical recoveries in the range of 89–100%). In addition, excellent accuracy was also verified after analyzing a FDT +25% control material for BZE. The detection limits were in the range of 0.16–1.7 ng L−1, low enough for confirmative conclusions regarding cocaine abuse. The method was finally applied for screening/quantifying cocaine and metabolites in urine samples from poly-drug abusers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.