Abstract
AbstractIn continental crust, rapid melt flow through macroscopic conduits is usually envisaged as the most efficient form of melt transport. In contrast, there is growing evidence that in hot continental crust, grain‐scale to meso‐scale porous melt flow may operate over long distances and over millions of years. Here, we investigate the dynamics of such porous melt flow by means of two‐dimensional thermo‐mechanical numerical models using the code ASPECT. Our models are crustal‐scale and describe the network of pores through which the melt flows by permeability that depends on the spacing of the pores. Our results suggest that assuming realistic material properties, melt can slowly migrate in the hot and thick continental crust through pores with a characteristic spacing of 1 mm or larger. Despite its low velocity (millimeters to centimeters per year), over millions of years, such flow can create large partially molten zones in the middle‐lower crust and significantly affect its thermal state, deformation, and composition. We examined the role of the permeability, melt and solid viscosities, the slope of the melting curve and temperature conditions. We obtained contrasting styles of melt distribution, melt flow, and solid deformation, which can be categorized as melt‐enhanced convection, growth of partially molten diapirs and melt percolation in porosity waves. Our numerical experiments further indicate that grain‐scale porous flow is more likely in rocks where the melt productivity increases slowly with temperature, such as in metaigneous rocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.