Abstract

Porous materials have been of high scientific and technological interest owing to their unique performances in many topical applications related to multiphasic functional systems: gas separation and storage, heterogeneous catalysis, energy conversion, etc. We review herein the synthetic strategies applied for using functionalized adamantane derivatives as polyhedral (mainly tetrahedral, Td-directing) building units of three-dimensional (3-D) porous supramolecular structures and nanomaterials, either purely organic or within metal hybrid frameworks. The resulting materials are currently used in varied heterogeneous (or supported) transition metal catalysis and organocatalysis, including recent high-value asymmetric synthesis. Characterization, synthetic applications and recycling properties of catalytic materials based on adamantane-scaffold are discussed. This review highlights the structuring advantages of variously functionalized-adamantanes to reach high surface area and controlled porosity for exploit...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call