Abstract

A sol–gel process was exploited to produce porous inorganic thin films from phenyl-bridged silsesquioxanes. The evolution of both structural and optical properties of the starting hybrid sol–gel films were monitored, during synthesis and successive thermal curing steps, by Fourier transform infrared (FT-IR) spectroscopy, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and spectroscopic ellipsometry (SE). Involved chemical species, structural and chemical modifications were identified when thermal treatments at increasing temperatures in the range of 60–800°C were applied to the hybrid films. The progressive formation of a crosslinked silica network, template elimination and film densification were observed, resulting in completely inorganic porous thin films of low refractive index. The distinctiveness of this system directly comes from the extremely controlled and uniform dispersion of the porogen at a molecular level, which is intrinsic to the bridged silsesquioxane precursor choice. A quantitative porosity analysis was performed by environmental ellipsometric porosimetry (EEP), studying inorganic film optical and mechanical properties under different relative humidity conditions. A transmission electron microscopy (TEM) in-situ characterization of porosity size and distribution confirms the presence of a spatially structured organization of pores of a few nanometers in diameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.