Abstract
Porous flower-like tin oxide (SnO2) nanostructure is prepared by annealing of the flower-like copper tin sulfur (Cu3SnS4) nanostructures. The morphology and crystal structure of the flower-like SnO2 nanostructures are characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The as-prepared porous flower-like SnO2 nanostructures exhibit a good response and reversibility to some organic vapors, such as toluene and formaldehyde. The sensing responses to 100 ppm of toluene and formaldehyde were 9.7 and 9.5, respectively. Moreover, the sensors exhibit a good response to benzene, methanol, ethanol, and acetone. The relationship between the gas-sensing properties and the microstructure of the as-prepared flower-like SnO2 nanostructures is also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.