Abstract

Recently, the emergence of conductive metal-organic frameworks (MOFs) has given great prospects for their applications as active materials in electronic devices. In this work, a high-quality, free-standing conductive MOF membrane was prepared by an air-liquid interfacial growth method. Accordingly, field-effect transistors (FETs) possessing a crystalline microporous MOF channel layer were successfully fabricated for the first time. The porous FETs exhibited p-type behavior, distinguishable on/off ratios, and excellent field-effect hole mobilities as high as 48.6 cm2 V-1 s-1, which is even comparable to the highest value reported for solution-processed organic or inorganic FETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.