Abstract

We report a scalable melt blowing method for producing porous nonwoven fibers from model cocontinuous polystyrene/high-density polyethylene polymer blends. While conventional melt compounding of cocontinuous blends typically produces domain sizes ∼1-10 μm, melt blowing these blends into fibers reduces those dimensions up to 35-fold and generates an interpenetrating domain structure. Inclusion of ≤1 wt % of a block copolymer compatibilizer in these blends crucially enables access to smaller domain sizes in the fibers by minimizing thermodynamically-driven blend coarsening inherent to cocontinuous blends. Selective solvent extraction of the sacrificial polymer phase yielded a network of porous channels within the fibers. Fiber surfaces also exhibited pores that percolate into the fiber interior, signifying the continuous and interconnected nature of the final structure. Pore sizes as small as ∼100 nm were obtained, suggesting potential applications of these porous nonwovens that rely on their high surface areas, including various filtration modules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call