Abstract

This study investigates the phase transformation and microstructure of porous FeAl parts sintered from elemental powder mixtures using in-situ neutron diffraction and in-situ thermal dilatometry. A single B2 structured FeAl phase was determined in the sintered FeAl alloy. The combined effects of the Kirkendall porosity, transient liquid phase, and phase transformations associated with powder sintering all contribute to the swelling phenomenon of the final sintered part. The aqueous corrosion test indicates that the corrosion products include iron oxides in the porous FeAl parts. The accumulation of corrosion products blocks the pore channel and decreases pore size and permeability over the soaking time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.