Abstract

Caseins are phosphoproteins found in milk. Compared with proteins and amino acids, casein contains not only amino acid residues but also large quantities of phosphate groups, providing more active sites. In this work, uniform nanofibrous mats were obtained from various blend ratios of casein and polyvinyl alcohol (PVA) solutions by electrospinning. With above aqueous solution, when the casein/PVA mass ratios were 50/50–20/80, electrospinning of nanofibres were possible. The effect of blend ratio, viscosity and applied voltage on morphological appearance and fibre size was studied. Scanning electron microscopy showed that the addition of PVA facilitated the formation beadless nanofibres whose diameter increased with casein concentration in the range between 80 and 300 nm. Fourier transform infrared spectroscopy and X-ray diffraction studies demonstrated intermolecular hydrogen bonding and changes in crystallinity between the molecules of casein and PVA. Thermal analysis using thermo gravimetric analyzer revealed thermal degradation temperature of nanofibrous mat. BET specific surface area and pore volume of casein/PVA nanofibrous mat was measured to be 52.0541 m2/gm and 0.090 cc/gm respectively. Electrospun casein/PVA nanofibrous mat mimicked the natural biomineralization of bone, demonstrating that, it can effectively improve the bioactivity and be useful for hydroxyapatite formation. Thrombin–antithrombin complex human in vitro ELISA assay for Hemostatic activity of casein/PVA nanofibrous mat demonstrated acceleration in hemostatic activity through higher level of thrombin generation and stable blood clot. Hemostatic activity, in vitro biodegradation in proteinase enzyme and swelling characteristics shows that casein/PVA electrospun mat can have potential biomedical application in wound dressing material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call