Abstract

AbstractPorous polymeric beads were obtained by the suspension polymerization of 2‐hydroxyethyl methacrylate (HEMA) and ethylene glycol dimethacrylate (EGDMA). Poly(HEMA–EGDMA) beads were characterized by surfacearea measurements, swelling studies, FTIR, scanning electron microscopy (SEM), and elemental analysis. Poly (HEMA–EGDMA) beads had a specific surface area of 56 m2/g. SEM observations showed that the poly(HEMA–EGDMA) beads abounded macropores. Poly(HEMA–EGDMA) beads with a swelling ratio of 55%, and containing different amounts of Reactive Red 120 (9.2–39.8 μmol/g) were used in the adsorption/desorption of human serum albumin (HSA) from aqueous solutions and human plasma. The nonspecific adsorption of HSA was very low (0.2 mg/g). The maximum HSA adsorption amount from aqueous solution in phosphate buffer was 60.1 mg/g at pH 5.0. Higher HSA adsorption value was obtained from human plasma (up to 95.7 mg/g) with a purity of 88%. The equilibrium monolayer adsorption amount, Qmax was determined as 172.4 mg/g. The dimensionless separation factor (RL) value shows that the adsorption behavior of HSA onto the Reactive Red 120 attached poly(HEMA–EGDMA) beads was favorable (0 < RL < 1). Desorption of HSA from Reactive Red 120 attached poly (HEMA–EGDMA) beads was performed using 0.1M Tris/HCl buffer containing 0.5M NaCl. It was observed that HSA could be repeatedly adsorbed and desorbed with Reactive Red 120‐attached poly(HEMA–EGDMA) beads without significant loss in the adsorption amount. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call