Abstract

In this manuscript, graphene-encapsulated porous cobalt oxide cubes (Co3O4@G) are fabricated through a facile precipitation reaction with subsequent calcination and a self-assembly process. The synthesized porous Co3O4 cubes anchored in the conductive graphene network can realize superior electrical conductivity, withstand volume variation upon prolonged cycling and shorten the diffusion path of lithium ions. When evaluated as anode materials, the Co3O4@G electrode shows excellent electrochemical properties in terms of both stable cycling performance and good rate capabilities. For example, a reversible discharge capacity of 980 mA h g(-1) is delivered after 80 cycles at a current density of 200 mA g(-1). Introducing a conductive graphene network to modify other metal oxides with poor electric conductivity and large volume excursions is of great interest in the development of lithium ion battery technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.