Abstract

Summary Aerogel-like, porous Ti 3 C 2 T x MXene architecture electrode displayed a high electroadsorption capacity for capacitive deionization of saline water. A vacuum freeze-drying process was employed to prevent the restacking of MXene nanosheets due to van der Waals forces, leading to the formation of a porous structure with a large specific surface area. When applied as electrode materials for capacitive deionization, porous MXene demonstrated a high specific capacitance of 156 F/g and a volumetric capacitance of 410 F/cm 3 in 1 M sodium chloride (NaCl) electrolyte. The porous Ti 3 C 2 T x MXene electrodes can deliver a high electroadsorption capacity of 118 mg/cm 3 (45 mg/g) in 10,000 mg/L NaCl solution (applied voltage: 1.2 V) and excellent cycling stability (up to 60 cycles) in comparison with the restacked MXene and activated carbon electrodes, indicating its promising potential for desalination applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call