Abstract

AbstractAdsorption‐based cooling is an energy‐efficient renewable‐energy technology that can be driven using low‐grade industrial waste heat and/or solar heat. Here, we report the first exploration of fluorocarbon adsorption using porous covalent organic polymers (COPs) for this cooling application. High fluorocarbon R134a equilibrium capacities and unique overall linear‐shaped isotherms are revealed for the materials, namely COP‐2 and COP‐3. The key role of mesoporous defects on this unusual adsorption behavior was demonstrated by molecular simulations based on atomistic defect‐containing models built for both porous COPs. Analysis of simulated R134a adsorption isotherms for various defect‐containing atomistic models of the COPs shows a direct correlation between higher fluorocarbon adsorption capacities and increasing pore volumes induced by defects. Combined with their high porosities, excellent reversibility, fast kinetics, and large operating window, these defect‐containing porous COPs are promising for adsorption‐based cooling applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call