Abstract

Porous cordierite-based ceramics with different microstructural features and mechanical behavior were formed by starch consolidation casting (SCC) using native potato and corn starches and sintered at 1275, 1300 and 1330°C. The composition and microstructure of the ceramic materials were investigated via quantitative phase analysis using X-ray diffraction (with Rietveld refinement), the Archimedes method, mercury porosimetry, scanning electron microscopy and optical microscopy with stereology-based image analysis. The mechanical behavior of samples was evaluated by diametral compression tests at room temperature, 1000 and 1100°C. The type of starch used and the sintering temperatures were the main factors determining the characteristics of the developed porous microstructures. Materials prepared with corn starch achieved the lowest porosity and the lowest values of mean chord length, mean pore distance and pore throat size. Because of these features, these materials thus presented, in general, higher values of apparent Young's modulus, elastic limit and mechanical strength than those prepared with potato starch. Despite the presence of a silicate glassy phase, both porous materials, mainly those prepared with corn starch, still enhanced the basic mechanical properties at high temperature, in particular, the mechanical strength and the apparent Young's modulus due to the special combination of the porous microstructure features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.