Abstract

Hydrogen evolution reaction (HER), serving as the cathodic reaction of magnesium (Mg)/seawater battery, could not only produce clean hydrogen directly from seawater but also generate electricity. However, the kinetics of the hydrogen evolution directly from the neutral seawater is sluggish, and leads to unsatisfied HER and battery performance. Herein, a unique porous CoP/Co2P heterostructure electrode was fabricated via a template-free strategy. As demonstrated, the optimized porous CoP/Co2P heterostructure exhibits superior activity for HER, with low overpotential of 87, 133 and 454 mV at 10 mA cm−2 in acidic, alkaline and seawater media, respectively. An Mg/seawater battery fabricated with the porous CoP/Co2P heterostructure cathode displays promising performance, with a peak power density of 6.28 mW cm−2, approaching to the platinum cathode, and a satisfied stability in a 24 h stability test, which is the best non-noble metal cathode reported. The superior battery performance could be attributed to the large active interfaces and the high specific surface area of the porous CoP/Co2P heterostructure electrode, which guarantee a low polarization of the cathodic HER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.