Abstract
A new application of porous ceramics as the attenuative backing element in high-temperature transducers is introduced. By introducing pores of different volume fractions and various sizes into the ceramic matrix, acoustic impedance and attenuation can be controlled to match their optimal values as predicted by a simple numerical model of the entire transducer, coupled with a model of the attenuative effect of the pores. This concept was applied to the design and manufacture of porous 3mol% Yttria-stabilized zirconia (YSZ) backing elements for a 2.8-MHz lithium niobate (LiNbO3) piezoelectric crystal, with a targeted operating temperature of 700°C to 800°C. Acoustic measurements revealed that the actual acoustic impedance and attenuation of the porous samples matched well with their predicted values. The design and fabrication process can be employed in manufacturing backing elements for a variety of transducers with specified center frequency and signal bandwidth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.