Abstract

Reverse microemulsions consisting of aqueous cerium nitrate solution as the internal phase and polycarbosilane dissolved in heptane as the continuous phase were used as a precursor for the controlled synthesis of dispersed cerium oxide particles inside a porous SiC matrix. According to dynamic light scattering experiments, the effective diameter of the cerium hydroxide particles obtained after ammonia addition is effectively controlled in a range of 2–10 nm with the molar water/surfactant ratio (Rw = 6–16). Pyrolysis at 1200 to 1500 °C produces materials with specific surface areas up to 240 m2 g−1. Whereas crystallization of the matrix is achieved only at higher temperature, cerium oxide particles form agglomerates composed of smaller nanoparticles that tend to dissolve into the ceramic matrix at 1500 °C leaving macropores behind. The high specific surface area is attributed to the presence of mesopores with a broad size distribution. Excess carbon present after pyrolysis is removed by oxidation at 900 °...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.