Abstract
AbstractRemoval of radioactive technetium‐99 (99TcO4−) from water by effective adsorbents is highly desired but remains a challenge. The currently used resin adsorbents possess several obstacles, such as slow adsorption kinetics and low adsorption capacity. To address these issues, herein a type of fibrous adsorbent with porosity and hyper‐branched quaternary ammonium groups, namely porous cationic electrospun fibers (PCE fibers), is successfully prepared. PCE fibers can remove 97% of 99TcO4− within 1 min and the equilibrium time of 99% removal is 20 min. The predicted maximum adsorption capacity toward the surrogate ReO4− can reach 826 mg g−1, which is higher than the state of art anion‐exchange resins and most of the other reported adsorbents. Furthermore, PCE fibers have good selectivity for ReO4− in the presence of competitive anions, and can retain ReO4− uptake under extreme conditions including high acid–base and gamma irradiation. Importantly, PCE fibrous adsorptive membrane is employed for dynamic ReO4− removal from simulated Hanford LAW stream with a processing capacity of 600 kg simulated stream per kilogram PCE fibers. The excellent performance highlights the advantages of PCE fibers over traditional resins in technetium removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.