Abstract

A monolithic, three-dimensionally ordered macroporous/mesoporous carbon/tin (IV) oxide (3DOM/m ) nanocomposite was prepared and tested as an anode material for lithium-ion batteries. A macro-/mesoporous glassy carbon (3DOM/m C) monolith was first synthesized from a triconstituent precursor, using a polymer colloidal crystal and a nonionic surfactant as the templates for macropores and mesopores, respectively. Tin (IV) oxide nanocrystals were then introduced into the mesopores of the carbon monolith via an infiltration-hydrolysis process while maintaining connections between macropores. The composite electrode exhibited superior reversible lithium capacity over a carbon/tin dioxide electrode without any designed mesostructure and also over similarly templated glassy carbon electrodes lacking the tin oxide component. The initial discharge capacity was and remained above for at . The formation of stable solid-electrolyte interphase layers contributed to the good cycleability of 3DOM/m . The structural and morphological changes of the electrode after cycling were evaluated by scanning and transmission electron microscopy and by X-ray diffraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.