Abstract

Abandoned peanut shells, a common farm waste, have caused tremendous environmental pollution and huge waste deposits through burned and buried disposal approaches. In targeting to enhance the potential value of peanut shells and discover a new alternative candidate for lithium ion batteries, we adopted an easy to scale-up and highly repeated method to treat fresh and dry peanut shells via acid-treatment and pyrolysis, making porous structures on carbonized peanut shells. The pyrolysis process transformed the peanut shells to porous carbon (PC) materials in a quartz tube furnace at a series of temperatures from 500°C to 700°C in N2 under the condition of 40°C gradient temperatures with a heating rate of 2°C min−1. Scanning electron microscopy (SEM) images show that the irregular porous structures and hundreds of micropores are distributed on the PC materials. The cyclic voltammogram (CV) test and particle size analysis are employed to investigate their characteristics of voltammetry and particle size distribution. PC material obtained at 620°C (PC-620) exhibited good particle distribution, porous structure and less agglomerated particles. When applied as anode materials in lithium ion batteries, the PC-620 electrode displayed the high reversible capacity of 608 mAh g−1. Moreover, the cycling performance of PC-620 was the most stable, with a high Coulombic efficiency of 98.9% at the 20th cycle, demonstrating a reversible capacity of 418 mAh g−1, which is higher than the theoretical capacity of graphite. Most importantly, the PC materials harvested from the wastes of natural resources are turned into valuable electrode materials for the high demand energy storage devices, which can significantly reduce severe environmental pollution and alleviate an energy shortage. Open image in new window

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call