Abstract

A facile two-step method for preparation of porous carbon materials was reported. We used a novel Co-MOF, made by cobalt nitrate and two organic ligands (9-ethylcarbazole-3,6-dicarboxylic acid and 1,3,5-Benzenetricarboxylic acid), as the template to synthesize the porous carbon through high temperature carbonization, which was applied as an anode material for lithium-ion batteries. A reversible capacity was maintained as high as 549 mA h g-1 after 49 cycles at a current density of 100 mA g-1, with coulombic efficiency of over 95%. The prepared porous carbon electrode also exhibited superior cycle stability and rate performance, making it a promising anode material for lithium-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call