Abstract

All-in-one architectures in which uniform nanoscale zero-valent iron nanoparticles are wrapped in hollow porous carbon shells are highly desirable for environmental applications such as wastewater treatment and for use as catalysts, but their preparation remains a significant challenge. Herein, a spatially confined strategy for the in situ preparation of uniform Fe0 @mC (mC=micro/mesoporous carbon) yolk-shell nanospheres, in which the iron nanoparticles are encapsulated in thin, porous carbon shells, is reported. The elaborately designed Fe0 @mC yolk-shell nanospheres were obtained by utilizing silica- and phenolic-resin-coated magnetite nanoparticle core-shell structures as templates by means of selective etching and in situ thermal reduction. The highly dispersed iron nanoparticles with superior reduction capability can effectively remove metal pollutants (e.g., AuIII , AgI , and CuII ), the carbon shell acts as protective cover and prevents aggregation of iron nanoparticles, and the void space in the capsules serves as a reactor for reduction and catalytic reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.