Abstract

Artificial bone composites exhibit distinctive features by comparison to natural tissues, due to a lack of self-organization and intimate interaction apatite-matrix. This explains the need of "bio-inspired materials", in which hydroxyapatite grows in contact with self-assembling natural polymers. The present work investigates the function of a rational design in the hydroxyapatite-forming potential of a common biopolymer. Gelatin modified through intrinsic interactions with calcium alginate led through freeze-drying to porous hydrogels, whose architecture, constitutive features and chemistry were investigated with respect to their role on biomineralization. The apatite-forming ability was enhanced by the porosity of the materials, while the presence of alginate-reinforced Gel elastic chains, definitely favored this phenomenon. Depending on the concentration, polysaccharide chains act as "ionic pumps" enhancing the biomineralization. The mineralization-promoting effect of the peptide-polysaccharide network strictly depends on the hydrogels structural, compositional and morphological features derived from the interaction between the above mentioned two components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.