Abstract

Pt-free electrocatalysts for hydrogen evolution reaction (HER) with high activity and low price are desirable for many state-of-the-art renewable energy devices, such as water electrolysis and photoelectrochemical water splitting cells. However, the design and fabrication of such materials remain a significant challenge. This work reports the preparation of a flexible three-dimensional (3D) film by integrating porous C3N4 nanolayers with nitrogen-doped graphene sheets, which can be directly utilized as HER catalyst electrodes without substrates. This nonmetal electrocatalyst has displayed an unbeatable HER performance with a very positive onset-potential close to that of commercial Pt (8 mV vs 0 mV of Pt/C, vs RHE @ 0.5 mA cm(-2)), high exchange current density of 0.43 mA cm(-2), and remarkable durability (seldom activity loss >5000 cycles). The extraordinary HER performance stems from strong synergistic effect originating from (i) highly exposed active sites generated by introduction of in-plane pores into C3N4 and exfoliation of C3N4 into nanosheets, (ii) hierarchical porous structure of the hybrid film, and (iii) 3D conductive graphene network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call