Abstract

The paper discusses the results of the numerical simulation of high-speed impact effect of compact projectiles made of steel and tungsten alloy with steel obstacles of equal mass. The obstacles have different initial porosity of the material. Conducted the final evaluation of the penetration speed of the projectile depending on the porosity of the obstacle and the initial speed of the shock interaction. The initial impact velocity range from 1 to 16 [km/s]. The destruction, melting and evaporation of the interacting bodies are taken into account. The analysis of porosity influence evaluation of obstacles material revealed that the protective advantage of porous obstacles disclose at the higher impact velocities, greater than 1.5 [km/s] for steel strikers and 2 [km/s] for projectiles of tungsten alloy. The more impact velocity the more protective effect of porous obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.