Abstract

AbstractIn this work we report a strategy for generating porosity in hybrid metal halide materials using molecular cages that serve as both structure‐directing agents and counter‐cations. Reaction of the [2.2.2] cryptand (DHS) linker with PbII in acidic media gave rise to the first porous and water‐stable 2D metal halide semiconductor (DHS)2Pb5Br14. The corresponding material is stable in water for a year, while gas and vapor‐sorption studies revealed that it can selectively and reversibly adsorb H2O and D2O at room temperature (RT). Solid‐state NMR measurements and DFT calculations verified the incorporation of H2O and D2O in the organic linker cavities and shed light on their molecular configuration. In addition to porosity, the material exhibits broad light emission centered at 617 nm with a full width at half‐maximum (FWHM) of 284 nm (0.96 eV). The recorded water stability is unparalleled for hybrid metal halide and perovskite materials, while the generation of porosity opens new pathways towards unexplored applications (e.g. solid‐state batteries) for this class of hybrid semiconductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.