Abstract

The functional gas sensor device plays a pivotal role in intelligent medical treatment, among which metal oxide semiconductors are widely studied because of their inexpensiveness and ease of fabrication. However, the metal oxide sensors present a significant challenge in detecting NH3 at ppm levels within complex exhaled gases. Herein, the ZnO/PdO-x series were prepared by in situ loading palladium particles and calcining using nano-ZIF-8 as a precursor, which not only provided more transport path for ammonia adsorption but also achieved homogeneous nanoheterojunction accumulation structure. The tailor-made ZnO/PdO-2 sensor exhibits the optimum gas sensitivity, with a response value of 5.56 for 100 ppm of NH3 at 160 °C and a lower detection limit of 0.75 ppm. Particularly, it has a clear quantitative response to the actual exhaled gas of liver and kidney patients. By elucidating the intrinsic link between the in situ loading of MOF templates and the sensing mechanism, it is expected to broaden the rational design of metal-oxide sensors and thus provide an effective method for clinical detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.