Abstract

Among the diverse approaches for improving the electrode performance of solid oxide fuel cells operating at intermediate temperatures, the use of nanofiber-based electrodes has provided large improvement owing to their large specific surface area, continuous conduction pathway, and highly porous structure. However, the low thermal stability at increased temperature often limits the process compatibility and sustainability during operation. In this study, we fabricated nanofiber-based electrodes with a high porosity and hollow shape using one-step electrospinning with a hydrogel polymer, which exhibited largely improved performance and excellent thermal stability. A porous-nanofiber-based cell exhibits a polarization resistance of 0.021 Ωcm2 and maximum power density of 1.71 W/cm2 at 650 °C, which is an improvement of 34.3% and 14.7% compared to that of a solid-nanofiber-based cell, respectively. Comprehensive analyses of the microstructures and chemistry indicate that the performance increase is mainly attributable to the enhanced surface oxygen exchange reactions owing to the extended reaction sites with lower energy barriers by the high porosity and enriched oxygen vacancies in the nanofibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.