Abstract
Owing to its high theoretical capacity of ~4200 mAh g−1 and low electrode potential (<0.35 V vs. Li+/Li), utilising silicon as anode material can boost the energy density of rechargeable lithium batteries. Nevertheless, the volume change (~300%) in silicon during lithiation/delithiation makes stable cycling challenging. Since some of the capacity fading mechanisms do not function in solid electrolytes, silicon anodes exhibit better cycling performance in solid electrolytes than liquids. Nonetheless, capacity can fade rapidly because of the difficulties in maintaining mechanical integrity in thick/bulky electrodes, especially when high active material loading is employed to deliver practically useful areal capacity. By contrast, silicon nanostructures can relieve deformation-induced stress and enhance cycling performance. Here we report enhanced cycling performances achieved using nanostructured silicon films and inorganic solid electrolyte and show that amorphous porous silicon films maintain high capacity upon cycling (2962 mAh g−1 and 2.19 mAh cm−2 after 100 cycles).
Highlights
Owing to its high theoretical capacity of ~4200 mAh g−1 and low electrode potential (
The large volume change in Si anodes leads to rapid capacity fading through several mechanisms: material pulverisation, morphology change of the entire Si electrode and solid-electrolyte interphase (SEI)[4]
The amorphous nature of the non-porous and porous Si films was confirmed by grazing incidence X-ray diffraction (GIXRD) and Raman spectroscopy, which demonstrated that all the films prepared in this study were amorphous without inclusion of crystalline Si (Supplementary Figs. 2 and 3)
Summary
Owing to its high theoretical capacity of ~4200 mAh g−1 and low electrode potential (
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.