Abstract

Dimensionality is a fundamental parameter to modulate the properties of solid materials by tuning electronic structures. Covalent organic frameworks (COFs) are a prominent class of porous crystalline materials, but the study of dimensional dependence on their physicochemical properties is still lacking. Herein we illustrate photocatalytic performances of N,N-diaryl dihydrophenazine (PN)-based COFs are heavily dependent on the structural dimensionality. Six isostructural imine-bonded 2D-PN COFs and one 3D-PN COF were prepared. All can be heterogeneous photocatalysts to promote radical ring-opening polymerization of vinylcyclopropanes (VCPs), which typically produces polymers with a combination of linear (l) and cyclic (c) repeat units. The 2D-PN COFs have much higher catalytic activity than the 3D-PN COF, allowing the efficient synthesis of poly(VCPs) with controlled molecular weight, low dispersity and high l/c selectivity (up to 97 %). The improved performance can be ascribed to the 2D structure which has a larger internal surface area, more catalytically active sites, higher photosensitizing ability and photoinduced electron transfer efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call