Abstract

Bone substitute materials with natural bone-like structure are considered to be favorable for bone regeneration. In this work, porous beta-tricalcium phosphate (beta-TCP)/collagen composite consisting of bone-like microstructural units was prepared using nanosized beta-TCP particles and alkaline-disassembled collagen. The resulting composite showed a good interconnecting porous structure with approximately 90% porosity and 100 approximately 300 microm pore size. The pore walls were dense, and the combination status of collagen and nanosized beta-TCP particles demonstrated that nanosized beta-TCP particles tightly connected collagen microfibrils as a bone-like microstructural unit. MTT and alkaline phosphatase (ALP) assays showed that the porous composite had enhanced effects on cellular proliferation and activity of osteoblast compared with a control of pure collagen. It is suggested that the adoption of nanosized beta-TCP particles is a main contribution to the formation of the composite with a bone-like microstructural unit, and the unique microstructure could be a main role for the composite to have the positive influence on osteoblast cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.