Abstract

The growing popularity of quasi-solid-state supercapacitors inevitably leads to the unrestricted consumption of commonly used petroleum-derived polymer electrolytes, causing excessive carbon emissions and resulting in global warming. Also, the porosity and liquid electrolyte uptake of existing polymer membranes are insufficient for well-performed supercapacitors under high current and long cycles. To address these issues, poly(lactic acid) (PLA), a widely applied polymers in biodegradable plastics is employed to fabricate a renewable biocomposite membrane with tunable pores with the help of non-solvent phase inversion method, and a small amount of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) is introduced as a modifier to interconnect with PLA skeleton for stabilizing the porous structure and optimizing the aperture of the membrane. Owing to easy film-forming and tunable non-solvent ratio, the porous membrane possesses high porosity (ca. 71%), liquid electrolyte uptake (366%), and preferable flexibility endowing the GPE with satisfactory electrochemical stability in coin and flexible supercapacitors after long cycles. This work effectively relieves the environmental stress resulted from undegradable polymers and reveals the promising potential and prospects of the environmentally friendly membrane in the application of wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.