Abstract

Developing a chemosensor for rapid, sensitive, and visual detection of iodide (I-) by a simple synthetic strategy is still challenging. Herein, we report a highly efficient iodide sensor by simply introducing ionic imidazolium groups into the porous network. This sensor, that is, a fluorescent ionic porous framework (IPF), was prepared by the quaternization reaction of octa((benzylchloride)ethenyl)silsesquioxane and 1,4-bis(1H-imidazole-1-yl)benzene and exhibited moderate porosity with a Brunauer-Emmett-Teller surface area of 379 m2 g-1 and blue fluorescence when excited by UV light. The IPF suspension in water can detect I- with high sensitivity and selectivity among various anions and quick response by fluorescence quenching. In contrast to no response toward I- by the linear model compound and the enhanced sensing performance with an increment of porosity, this finding indicates that the porosity of IPF is important for the detection of I- and an inducement of the sensing process. A fluorescent paper sensor was further developed, which shows high efficiency for the visual detection of I- similar to the abovementioned sensor, suggesting its potential in convenient and on-site sensing of I-. In addition, the paper sensor is recyclable with a remarkable fluorescence resuming ratio of 83% after 10 times cycle detection. Moreover, the developed sensor is used for the analysis of real samples. This work represents the first example of the detection of I- by an ionic porous polymer. Compared with conventional iodide sensors, the present sensor does not require unique structures to form the pseudocavity during sensing I- and can easily achieve high efficiency by incorporating ionic hydrogen bond donors into the porous network, indicating the importance of porosity and the feasibility of replacing the pseudocavity with a real cavity (or pore). More iodide sensors with high efficiency can be designed and fabricated by this novel and simple strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.