Abstract

Porosity-dependent free vibration and dynamic stability of functionally graded nanofilms are studied according to the nonlocal strain gradient theory. Two-scale coefficients are considered to incorporate both nonlocality and strain gradient impacts. The nanofilm is subjected to in-plane hygro-thermal and harmonic mechanical loads. Uniform dispersion of porosities is considered according to a power-law model for functionally graded materials. Galerkin's approach is employed to obtain the vibration frequencies as well as stability regions. One can see that stability regions and vibration frequencies of a functionally graded nanofilm are significantly affected by static load parameter, dynamic load parameter, porosities, moisture change, temperature change, and elastic substrate nonlocal strain gradient coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call