Abstract

Tailoring the mechanical properties in hybrid materials, like functionally graded materials (FGMs), has become more pragmatic with the recent progress in material manufacturing and design. The porosities in FGMs, which develop during the manufacturing process, may become detrimental to armored plates or bulletproof designs. On the other hand, gradient-porosity distributions may have broad advantages in the design of lightweight and variable-stiffness aircraft components. The present study investigates the free vibration and transient responses of porosity-gradient FGM plates. A higher order theory, which considers the transverse shear and normal deformation, warping of the transverse cross-section, and higher order rotary inertia, is utilized for the first time to model the deformation of the porous FGM plate. The advantages of this model are (i) higher order kinematic terms for membrane and bending deformations due to the coupled membrane-bending behavior of FGMs in addition to the thickness-stretching effects, and (ii) the flexibility of applying external loads at different points along the thickness direction of the FGM plate. An analytical solution technique, popularly known as Navier’s approach, is adopted for the spatial solutions, and Newmark’s average acceleration method is utilized for the temporal solutions. The influence of the geometrical and porosity parameters on the structure’s vibration response is studied. Natural frequencies are affected significantly with uniform porosity distribution, while graded porosities can tweak vibration response in a small range but with better control. In the absence of the elasticity solutions, the present results may be considered the possible benchmark solutions for comparison of the other two-dimensional (2D) kinematic models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call